Statistical Catch-at-Length Assessment of S. fasciatus in Unit 3

Rebecca A. Rademeyer and Doug S. Butterworth

April 2014

Abstract

An update of the 2011 Rademeyer and Butterworth SCAL assessment is presented. This incorporates some refinements of the previous methodology. Results with a deterministic stockrecruitment relationship are poor in not admitting a realistic estimate of survey catchability q. However, if the possibility of occasional large recruitments is introduced, the model fits the survey estimates of abundance better and a realistic estimate of q is obtained. As estimates of the depletion (B / K) of the resource vary considerably, possibly the best approach to management in the shorter term would be by setting catch limits based on annual replacement yield (RY) estimates, as these are reasonably robustly estimated at about 5000 tons.

Introduction

This document presents results for an updated application of a Statistical Catch-at-Length (SCAL) assessment approach to the S. fasciatus resource in Unit 3. This Unit has the advantage, for assessment purposes, of minimal presence of S. mentella, and so provides a simple case for illustrating the SCAL methodology.

The results presented in this document fall into two sections. First there are those for some initial runs which were discussed at a teleconference held in early March 2014. Following that teleconference, ideas for further runs were offered and subsequently developed, and those follow in a second section.

Data and methods

The data are as used in Rademeyer and Butterworth (2011) for S. fasciatus in Unit 3, and are reproduced in Appendix A.

The methodology, detailed in Appendix B, is also basically as described in Rademeyer and Butterworth (2011). The following changes have been made compared to that earlier paper.
a. The growth parameters now used are: $L_{\text {inf }}=31.879(\mathrm{~cm}), \kappa=0.22132\left(\mathrm{yr}^{-1}\right)$ and $t_{0}=0$ (from fitting a von Bertalanffy growth curve through the origin to the Campana ageing data from Units 1+2).
b. Instead of assuming a knife-edged maturity-at-age 9, a knife-edged maturity-at-length 22 cm is assumed, which is then converted to maturity-at-age using the estimated age-length distribution.
c. Although the survey biomass index is taken to be proportional to the mature biomass only ($\geq 22 \mathrm{~cm}$), the model is now fitted to the whole range of survey catch-at-length data available (the assumption of proportionality to the mature biomass is carried over from simple models used in the past; it
might merit reconsideration when applying SCAL methodology which does not require this further specification).
d. The survey and commercial catch-at-length data are downweighted by a factor of 0.01 instead of 0.1 in Rademeyer and Butterworth (2011). This is to ensure that catch-at-length information does not unduly influence the model's attempt to fit the survey index data.
e. In the cases where log-normally distributed fluctuations about the stock-recruitment relationship are admitted, and with a high value for the extent of variability $\sigma_{R}=1.5$ to allow for the possibility of occasional very large recruitments, the starting abundance and age-structure corresponds to median rather than to mean recruitment (and carrying capacity K similarly), so that this reflects the typical situation absent those large year classes.
f. The results for each run now include a value for replacement yield (RY). This is the future annual catch which would maintain the spawning biomass at its current (2010) level by 2020.

Results

Results are first compared for a series of SCAL assessments with fixed q values (1.5, 1.0, 0.5 and 0.15) and first flat selectivity, followed by decreasing selectivity ("dome") at larger lengths (see below for the reasons why this approach of fixing to a series of fixed q values was adopted) (runs 1 to 8). Table 1 gives results for all these eight scenarios.

At the March 2014 teleconference, a further series of scenarios were suggested. The corresponding runs have been based on the $q=0.5$, flat selectivity at larger lengths, scenario.
9) Fixed $q=0.43$ (as advised to correspond to the estimate by Alida Bundy).
10) Estimate q freely.
11) Alternative growth curve - see Figure 1 (Don Power, pers. commn).
12) Allow for recruitment variability with a) $\sigma_{\mathrm{R}}=0.4$ and $q=0.5$, b) $\sigma_{\mathrm{R}}=1.5$ and $q=0.5$ and c) $\sigma_{\mathrm{R}}=1.5$ and q estimated freely.
13) Start the model in 1977 given lack of reliability of pre-1977 catches.
14) Allow for a change in commercial selectivity between 1986 and 1987.
15) a) Flat survey selectivity from length 25 cm and b) flat survey and commercial selectivities from length 25 cm .
16) a) A combination of 12 b and 15 b , and b) a combination of 12 c and 15 b , i.e. both high recruitment variability and flat selectivity.

Figures 2 to- 8 compare the scenarios described above. These Figures contain plots of spawning biomass and recruitment (age-0 fish) trajectories (first row), fits to the survey and commercial catch-at-length data (second row, as averaged over all the years for which data are available) and fits to the survey biomass index, including residuals (third row).

Figures 2 and 3 compare scenarios across the different fixed q values for the flat selectivity (runs 1 to 4) and then the dome selectivity (runs 5 to 8) respectively. In these plots of the fits to the catch-at-length
data and the survey biomass index residuals, only the two extreme cases ($q=1.5$ and $q=0.15$) are shown. Figure $4-8$ show results for the second set of scenarios, all compared to run 3 with $q=0.5$.. Figure 9 plots the commercial and survey selectivities-at-length for runs 3,14 (change in commercial selectivity between 1986 and 1987), 15a (flat survey selectivity from length 25 cm onwards) and 15b (flat commercial and survey selectivities from length 25 cm onwards). The fit to the commercial CAL for run 3 and run 14 are compared in Figure 10.

In Appendix C, Figures C1.1 to AC.16b give results for each scenario individually. These Figures contain plots of spawning biomass, catch and recruitment trajectories as well as the stock-recruitment curve in the first row. Survey and commercial selectivities-at-length and -at-age are plotted in the second row, together with fits to the survey and commercial catch-at-length data (as averaged over all the years for which data are available). Bubble plots of the standardised residuals for the fit to the survey and commercial catch-at-length data are also shown. The area of the bubble is proportional to the magnitude of the corresponding standardised residuals. For positive residuals the bubbles are grey, whereas for negative residuals the bubbles are white. Finally, the fit to the survey index, and the associated residuals, are plotted, together with the estimated distributions for length at age.

Discussion

Initial discussion considers the first set of scenarios (runs 1-8), for which the stock-recruitment relationship is deterministic.

1) The survey biomass index data are too noisy to provide an unambiguous preferred fit. It iwas considered best initially to illustrate fits over a plausible range of values for q, which we has been taken to be 0.15 to 1.5 (note that values above 1 imply herding by the survey net). There will need to be further discussion as to what range IS reasonably considered plausible.
2) Over the range of q considered here, the resource is estimated to be above its $B_{\text {MSY }}$ level in all the scenarios, and currently increasing. Estimates of current (2009) spawning biomass levels relative to pre-exploitation level range from 41 to 93% across the eight scenarios considered.
3) The priority is a good fit to the survey index. Although this index shows signs of first a downward then an upward trend, these models prefer a lower q with a fitted trend that is near flat. The reason is that the larger catches historically tend to have occurred BEFORE the survey index downtrend ends.
4) One MIGHT (no guarantee) get a better fit by trying out other values of M and h - but we are skeptical that that will gain much, so wary about investing too much more time there.
5) The lower q fits better - but we are nervous of over-interpreting that because this is achieved through a predicted index that is almost trendless, in contrast to apparent features in the survey data.
6) Introducing a selectivity dome does result in a better fit to the CAL data. Biomass and sustainable yield estimates increase, but the estimated status of the resource relative to K and to $B_{\text {MSY }}$ is not greatly affected.
7) Fits to the CAL data might be improved through introducing recruitment and selectivity at age variability, plus smoothing the mean selectivity function with age.

Then for the further runs 5) to 16b) developed following the March 2014 teleconference, the following features are evident (see Table 2 and Figures 4-10).
8) Estimating q freely (run 10) leads to an unrealistically low value and correspondingly unrealistically high biomass.
9) A number of the sensitivity runs lead to little difference from the baseline run $3(q=0.5)$: the alternative growth curve (run 11); starting in 1977 (run 13), though biomass is less in this case; a change in commercial selectivity between 1986 and 1987 (run 14), which also does not improve the fit to the CAL data greatly (Figure 10); and forcing all selectivities to be flat above 25 cm (runs 15a and b).
10) With the introduction of stochasticity in recruitment, there is little difference to results if σ_{R} is small (run 12a). However for σ_{R} set large to allow for the possibility of occasional large year-classes (runs 12 b and 12c), there is a distinct improvement to the fit to the survey abundance time series. MSY estimates for these scenarios are some 4-5 times larger than for the other scenarios considered.
11) Perhaps the best fits to these data are provided by the combination of large σ_{R} and flat selectivities above 25 cm (run 16a). This combination of assumptions also allows for a plausible estimate of q at 0.68 (run 16b) with a Hessian based CV of 0.68 . Estimating rather than fixing q does not compromise estimation precision fatally: for example, the CV on the MSY estimate increases from 11 to 24%.

Finally, across all the scenarios considered (see also the plots in Appendix C) the following features are also evident.
12) Fits to the CAL data are not that good for the commercial catch, and improve only slightly for the surveys.
13) Estimates of replacement yield (RY) are certainly more robust than those of MSY. For most scenarios, these RY estimates range between 4300 and 5300 tons, thoughthey are slightly higher for the cases where q is fixed to be large (runs 1, 2 and 5).

Conclusions

The most promising of the fits attempted are those which allow for the possibility of occasional high recruitments by setting the recruitment variability parameter σ_{R} large, though in future mixture distributions might offer a better way to model this possibility. They also admit a realistic estimate of catchability q, and without fatally jeopardising the precision of estimates.

Nevertheless estimates of the depletion (B / K) of the resource vary considerably. Possibly the best approach to management in the shorter term would be by setting catch limits based on annual replacement yield (RY) estimates, as these are reasonably robustly estimated at about 5000 tons

REFERENCES

Rademeyer RA and Butterworth DS. 2011. Initial applications of statistical catch-at-age assessment methodology to Atlantic redfish. Document submitted to Canadian ZAP meeting related to Precautionary Approach reference points for redfish populations, Mont-Joli, October 2011: 34pp.

Table 1: Results of fits of SCAL runs 1 to 8 for S. fasciatus in Unit 3. Values fixed on input rather than estimated are shown in bold. Mass units are '000t.

	1) 2) 3) 4) Flat survey and commercial selectivities at larger lengths				5) 6) 7) 8) Decreasing survey and commercial selectivities at larger lengths			
	$q=1.5$	$q=1.0$	$q=0.5$	$q=0.15$	$q=1.5$	$q=1.0$	$q=0.5$	$q=0.15$
-InL: overall	22.61	23.18	20.89	19.19	20.64	20.31	18.66	17.76
-InL: survey	8.93	9.57	7.20	5.43	6.29	7.47	5.98	5.16
-InL: survCAL	10.41	10.34	10.28	10.20	11.29	9.81	9.68	9.61
-InL: comCAL	3.26	3.27	3.40	3.55	3.06	3.03	3.00	2.98
-InL: RecRes	0	0	0	0	0	0	0	0
h	0.67	0.67	0.67	0.67	0.67	0.67	0.67	0.67
M	0.125	0.125	0.125	0.125	0.125	0.125	0.125	0.125
θ	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
ζ	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
$K^{\text {sp }}$	137	149	210	431	145	176	259	669
$B^{\text {SP }}{ }_{2009}$	57	82	157	383	46	120	210	624
$B^{\text {Sp }}{ }_{2009} / K^{\text {Sp }}$	0.41	0.55	0.75	0.89	0.31	0.68	0.81	0.93
MSYL ${ }^{\text {sp }}$	0.30	0.30	0.30	0.30	0.31	0.31	0.31	0.31
$B^{S P}{ }_{\text {MSY }}$	41	45	63	129	45	55	82	210
MSY	6.7	7.1	9.6	19.5	6.6	8.1	11.7	29.9
RY	6.4	5.8	4.7	4.4	6.8	5.3	4.7	4.5
Survey	q 's							
Unit 3	1.50	1.00	0.50	0.15	1.50	1.00	0.50	0.15
σ_{R-} out	0	0	0	0	0	0	0	0

Table 2: Results of fits of SCAL runs 9 to 15 for S. fasciatus in Unit 3. Values fixed on input rather than estimated are shown in bold. Mass units are ' 000 t. For runs 16 a and 16 b, the Hessian-based CVs are shown in parenthesis.

	5)	9)	10)	11)	12a)	12b)	12c)	13)	14)	15a)	15b)	16a)	16b)
	$q=0.5$	$q=0.43$	$\begin{gathered} q \\ \text { estimated } \end{gathered}$	Alt. growth curve	$\begin{aligned} \sigma_{R} & =0.4, \\ q & =0.5 \end{aligned}$	$\begin{gathered} \sigma_{R}=1.5 \\ q=0.5 \end{gathered}$	$\begin{gathered} \sigma_{R}=1.5 \text {, } \\ q \\ \text { estimated } \end{gathered}$	Start in 1977	Change in sel in 1986	Flat survey sel $>25 \mathrm{~cm}$	Flat survey and comm sel $>25 \mathrm{~cm}$	Combination of $12 b$) and 15b)	Combination of 12 c) and 15b)
-InL: overall	20.89	20.50	18.99	20.54	19.28	16.06	15.92	13.56	19.63	20.97	21.04	16.28	16.20
-InL: survey	7.20	6.85	4.97	6.89	5.31	3.04	3.15	2.64	7.27	7.45	7.45	3.05	3.11
-InL: survCAL	10.28	10.23	10.33	10.32	9.91	9.06	8.97	8.18	10.19	10.17	10.22	9.24	9.19
-InL: comCAL	3.40	3.41	3.68	3.33	3.24	2.97	2.79	2.74	2.17	3.35	3.37	3.10	3.01
-InL: RecRes	0	0	0	0	0.83	0.98	1.01	0	0	0	0	0.90	0.89
h	0.67	0.67	0.67	0.67	0.67	0.67	0.67	0.67	0.67	0.67	0.67	0.67	0.67
M	0.125	0.125	0.125	0.125	0.125	0.125	0.125	0.125	0.125	0.125	0.125	0.125	0.125
θ	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.68	1.00	1.00	1.00	1.00	1.00
ζ	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
$K^{\text {sp }}$	210	222	4259	215	209	291	249	162	199	194	192	289 (0.11)	256 (0.26)
$B^{\text {SP }}{ }_{2009}$	157	171	4214	146	137	150	99	112	145	140	137	145 (0.27)	105 (0.78)
$B^{5 p}{ }_{2009} / K^{\text {sp }}$	0.75	0.77	0.99	0.68	0.65	0.52	0.40	0.69	0.73	0.72	0.72	0.50 (0.23)	0.41 (0.55)
MSYL ${ }^{\text {Sp }}$	0.30	0.30	0.30	0.31	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30 (0.06)	0.30 (0.06)
$B^{s p}{ }_{\text {MSY }}$	63	67	1277	66	63	270	232	49	60	58	57	265 (0.14)	235 (0.26)
MSY	9.6	10.1	191.6	8.1	9.6	40.5	34.9	7.3	8.6	8.9	8.8	40.3 (0.11)	35.9 (0.24)
RY	4.7	4.7	5.0	5.1	5.3	4.9	4.5	4.3	4.6	4.9	4.9	4.5	4.6
Survey q 's	0.50	0.43	0.01	0.50	0.50	0.50	0.78	0.50	0.50	0.50	0.50	0.50	0.68 (0.68)
σ_{R-} out	0	0	0	0	0.07	0.29	0.30	0	0	0	0	0.28 (0.60)	0.28 (0.62)

Figure 1: The base case growth curve used, as developed from ageing of S. fasciatus in Units $1+2$ by Campana. An alternative growth curve (Don Power, pers. commn) used in run 11 is also shown.

Figure 2: Comparison of results for the four SCAL assessments of runs 1-4 with fixed q and flat selectivity at larger lengths. The fits to the survey and commercial CAL data (second row) are as averaged over all the years for which data are available.

Figure 3: Comparison of results for the four SCAL assessments with fixed q and decreasing selectivity at larger lengths (runs 5-8). The fits to the survey and commercial CAL data (second row) are as averaged over all the years for which data are available.

Figure 4: Comparison of results for runs $3(q=0.5)$ and $9(q=0.43), 10$ (q estimated) and 11 (an alternative growth curve). The fits to the survey and commercial CAL data (second row) are as averaged over all the years for which data are available.

Figure 5: Comparison of results for runs $3(q=0.5)$, 12a ($\sigma_{R}=0.4, q=0.5$), 12b ($\sigma_{R}=1.5, q=0.5$) and 12c ($\sigma_{R}=1.5, q$ estimated). The fits to the survey and commercial CAL data (second row) are as averaged over all the years for which data are available.

 commercial CAL data (second row) are as averaged over all the years for which data are available.

Figure 7: Comparison of results for runs 3 ($q=0.5$), 14 (change in commercial selectivity between 1986 and 1987), 15a (flat survey selectivity from length 25 cm) and 15 (flat survey and commercial selectivities from length $\mathbf{2 5 c m}$). The fits to the survey and commercial CAL data (second row) are as averaged over all the years for which data are available.

Figure 8: Comparison of results for runs $3(q=0.5)$, $16 \mathrm{a}\left(\sigma_{R}=1.5, q=0.5\right.$, and flat survey and commercial selectivities from length 25 cm) and 16b ($\sigma_{R}=1.5, q$ estimated, and flat survey and commercial selectivities from length $\mathbf{2 5 c m}$). The fits to the survey and commercial CAL data (second row) are as averaged over all the years for which data are available.

Figure 9: Comparison of commercial and survey selectivities-at-lengths for runs 3, 14, 15a and 16b.

Run 8: $q=0.5$

Run 14: Change in comm. sel. between 1986 and 1987

Figure 10: Fit to the commercial CAL data for runs 3 and 14 (with change in commercial selectivity between 1986 and 1987).

Appendix A - The data

Note: Units are throughout cm for length and yr for time.
Table A1: Catch in kt and swept area mature (i.e. $>22 \mathrm{~cm}$) biomass estimates (in kt) and coefficients of variation (CVs) for S. fasciatus in management unit 3.

Year	Catch	Survey	CV
1960	20.10		
1961	19.60		
1962	24.00		
1963	23.50		
1964	10.80		
1965	11.00		
1966	25.90		
1967	6.60		
1968	2.90		
1969	5.40		
1970	15.70	55	(0.7)
1971	25.60	71	(0.7)
1972	24.40	133	(0.7)
1973	17.30	133	(0.7)
1974	14.20	31	(0.7)
1975	10.50	209	(0.7)
1976	7.00	26	(0.7)
1977	4.80	100	(0.7)
1978	3.70	169	(0.7)
1979	2.80	26	(0.7)
1980	4.00	15	(0.7)
1981	4.40	34	(0.7)
1982	4.70	71	(0.7)
1983	4.90	123	(0.7)
1984	5.20	96	(0.7)
1985	5.60	15	(0.7)
1986	6.60	79	(0.7)
1987	6.10	59	(0.7)
1988	3.90	79	(0.7)
1989	3.30	25	(0.7)
1990	2.30	56	(0.7)
1991	2.00	22	(0.7)
1992	2.50	107	(0.7)
1993	5.20	69	(0.7)
1994	5.20	47	(0.7)
1995	4.80	38	(0.7)
1996	4.80	42	(0.7)
1997	6.40	67	(0.7)
1998	5.80	17	(0.7)
1999	4.50	61	(0.7)
2000	4.80	48	(0.7)
2001	4.30	94	(0.7)
2002	4.80	32	(0.7)
2003	3.00	50	(0.7)
2004	2.10	33	(0.7)
2005	3.10	116	(0.7)
2006	2.70	96	(0.7)
2.90	33	(0.7)	
2.60	146	(0.7)	
	5.20	147	(0.7)

Length	1970	1971	1972	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002		4	5		,	008	009	010
$10-$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	
12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	8	2	0	0	0	0	0	0	0	0	3	0	0	0	0	
13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	6	30	4	0	0	0	0	0	0	0	2	0	0	5	0	0	
14	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	39	19	57	10	0	0	0	0	0	0	0	5	21	5	0	0	0	
15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4	0	0	0	0	0	0	9	50	78	24	0	0	2	4	0	3	0	12	30	11	11	5	0	
16	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	9	0	27	0	0	61	0	18	111	146	49	10	15	9	2	0	19	2	14	69	22	12	9	3	88
17	0	0	18	144	0	0	0	0	0	0	0	0	0	0	0	10	11	18	2	23	0	245	0	63	314	197	74	13	27	3	14	0	36	0	20	134	97	42	33	42	190
18	0	25	0	96	0	0	0	0	0	0	0	0	2	0	0	13	62	6	0	75	33	294	0	69	501	261	97	72	147	51	61	0	117	47	20	235	260	91	74	138	777
19	24	0	87	776	0	0	17	0	0	15	8	31	18	7	5	26	150	135	85	72	68	453	0	304	565	381	173	176	204	151	277	1	270	98	51	176	259	249	291	543	2537
20	50	0	703	2147	191	41	17	87	0	46	23	86	104	23	9	114	232	221	89	244	71	563	0	379	660	655	275	654	303	519	705	3	814	304	205	166	241	374	504	1030	5198
21	386	39	1213	2278	667	53	94	211	25	60	35	165	117	53	35	123	387	663	73	478	165	1037	6	289	703	638	426	635	630	588	813	3	1229	523	35	24	23	377	754	1108	5508
22	549	151	2289	6714	2911	383	583	414	48	30	106	453	76	241	103	102	419	898	396	1014	216	508	19	874	942	775	696	1335	934	1144	1223	5	2061	1162	712	547	320	481	787	1054	4443
23	734	623	2286	7013	3716	1398	2106	690	112	147	123	560	163	228	161	248	473	1123	456	1202	534	575	19	696	1015	1071	868	1792	1182	1105	1367	5	5	106	601	87	478	656	1152	1081	2870
24	1011	1094	1749	6676	4582	2770	2357	1613	315	224	226	742	495	633	366	672	625	1387	530	1013	855	357	6	1295	1460	1256	1129	1984	1777	1641	1651	6	240	1146	815	1156	524	772	1133	1185	1686
25	890	1705	1513	5927	4828	3499	3238	1233	475	576	363	815	994	956	767	1624	871	1897	768	1174	1176	418	16	1277	1634	1736	1771	1737	1673	1622	1584	6	214	126	100	118	660	809	126	1156	1087
26	736	1699	1319	4768	4984	4121	2679	1661	750	838	435	1266	1430	1454	1266	1876	1331	2144	1077	1288	973	416	35	1115	1449	1842	2143	1891	1787	1578	1682	5	184	109	101	1138	678	821	107	1074	737
27	876	1883	1094	5328	6449	3540	2378	1619	812	803	733	950	1739	1575	1462	2263	1305	2027	1012	1110	1167	451	71	1119	1418	1646	2009	1544	1736	1285	1528	4	1413	933	727	1221	720	754	1002	1236	616
28	1182	2641	614	4038	3193	4357	1500	1282	534	867	644	1162	1305	1427	1722	1783	1201	1526	670	528	529	413	189	1270	1203	1363	1750	1318	1266	1075	990	3	959	520	560	1186	758	946	992	1138	538
29	1128	2764	682	3056	2520	2745	1143	972	590	1190	840	1143	985	1375	1103	1782	1038	1476	653	492	310	353	203	1298	1106	1209	1545	1199	1165	886	1002	2	776	443	444	872	633	710	944	1017	448
30	1258	200	48	2650	285	1940	987	855	620	873	783	1746	1000	1163	1229	1570	1140	1471	809	298	181	272	200	960	846	850	894	1106	1022	857	982	2	782	327	257	657	508	637	626	887	341
31	1425	256	39	1927	1493	1707	1255	858	486	482	883	710	1078	953	1222	1116	869	953	96	403	226	168	190	678	498	463	447	556	594	424	464	1	424	195	134	298	463	531	455	69	315
32	1681	2457	538	1848	1299	1111	364	443	426	422	671	821	862	874	1119	882	752	842	555	326	242	113	241	638	467	448	319	528	533	295	397	1	291	172	125	169	356	426	416	532	371
33	1443	2620	511	1539	1350	1322	388	405	323	170	436	289	511	501	720	616	514	449	473	268	158	176	302	670	278	273	200	428	446	291	259	0	189	125	68	72	258	261	284	362	237
34	1835	3259	519	835	919	427	358	261	258	61	361	239	141	328	408	354	262	247	391	150	83	178	270	387	248	158	128	296	301	208	214	0	96	97	42	38	199	95	152	232	184
35	1732	2298	304	431	600	153	134	242	202	47	231	65	76	161	117	182	152	163	273	40	24	72	222	120	167	107	78	207	253	136	144	0	58	65	28	27	12	77	72	129	82
36	1351	2064	29	40	398	76	139	198	282	29	204	8	95	102	54	29	2	141	121	11	22	66	189	103	108	83	27	203	131	121	134	0	49	67	17	24	104	31	43	71	42
37	1050	167	156	275	259	53	165	35	236	12	163	6	28	90	23	6	123	64	92	8	6	14	176	153	137	73	24	190	126	105	114	0	26	56	21	5	47	20	13	23	
38	1090	1383	96	214	135	0	161	17	158	0	183	7	22	45	18	2	260	4	110	7	5	13	180	108	76	63	18	134	89	70	71	0	16	56	14	4	19	2	9	22	23
39	959	1208	65	40	110	0	93	0	141	1	93	4	5	16	10	2	169	9	109	3	2	0	285	79	47	39	10	88	80	67	65	0	12	44	8	4	18	5	7	19	
40	898	1599	55	105	18	0	66	0	17	,	100	2	4	6	5	0	222	0	130			0	349	24	46	40	7	112	59	65	51		9	35	6	2	3	2	6	14	
41	890	1512	77	0	18	0	36	0	145	0	34	0	1	2	2	0	143	0	67	1	0	0	163	0	35	13	3	60	31	38	31	0	7	22	5	1	0	0	1	8	
42	806	1021	63	0	0	0	4	0	21	-	7	0	1	1	0	0	245	0	40	2	0	0	84	0	31	11	3	70	28	26	33	0	8	24	6	2	3	1	1	6	
43	322	732	18	0	0	0	0	0	60	0	22	0	0	3	0	0	116	0	22	1	0	0	33	1	33	5	2	73	21	19	16		3	18	3	1	1	0	0	2	
44	194	466	7	0	0	0	0	0	39	0	11	0	0	1	0	0	193	0	16	0	0	0	3	0	23	2	0	58	24	14	17	0	1	14	2	1	0	0	0	1	
45	101	60	4	0	0	0	0	0	49	0	25	0	0	0	0	0	205	0	10	0	0	0	0	0	5	2	0	50	17	10	4	0	1	12	1	1	2	0	0	3	
46	44	119	0	0	0	0	0	0	23	0	7	0	0	0	0	0	103	0	14	0	0	0	0	0	15	1	0	24	17	7	3	0	0	6	0	1	0	0	,	1	
47	0	0	0	0	0	0	0	0	11	0	11	0		0		0	90	0	12	0	0	0	0	0	7	0	0	16	7	1	0	0	0	4	0	0	0	0	0	0	
48	11	0	0	0	0	0	0	0	-	0	4	0	0	0	0	0	13	0	5	0	0	0	0	0	0	0	0	5	3		2	0	0	1	0	0	0	0	0	0	
49	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	13	0	0	0	0	0	0	0	0	0	0	5	3	0	1	0	0	1	0	0	0	0	0		
50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	,	0	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	
51	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	-	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	
52	0	0	0	0	0	0	0	0	0	0	0	0		-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
53	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
54	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
55+	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	

Table A3：Survey catch－at－length（numbers）for S．fasciatus for Unit 3 （Peter Comeau，pers．commn）

	：	\bigcirc	：					○																																：	
	：	。	－																			10974								2824	303										
	：	：	：										19732			${ }_{6027}^{6207}$						4658	2036						$\substack{315299 \\ 16095 \\ \\ \hline}$	${ }_{202359}^{2023}$	37324		${ }_{\substack{3907 \\ 7616}}$	47075		11938	11175	1937			${ }_{\substack{117339 \\ 5324}}^{\substack{\text { che }}}$
	：	\bigcirc	${ }_{\text {7505 }}$						1518				${ }_{\substack{465876 \\ 88724}}^{\substack{\text { and }}}$	7109	${ }^{12932}$		6832	${ }_{\text {2001 }}^{23001}$		${ }_{\substack{127032}}^{27029}$	11035		${ }_{\substack{2026 \\ 1724}}^{204}$	Sex		${ }_{\text {cher }}^{6512}$	${ }_{2}^{225602}$	${ }_{\text {3030 }}^{3030}$	（140296		${ }^{322311}$	${ }_{\substack{4 \\ 40257 \\ 12040}}$		，			（103s9	${ }_{\substack{38376 \\ 12536}}^{\substack{\text { 123，}}}$	（125930	¢ 51818	边
		959							18873					$\xrightarrow{71999}$		29824			${ }_{\text {4，}}^{\text {49988 }} 1$	${ }_{2}^{278024} 1$	${ }_{\substack{10350 \\ \text { sa33 }}}^{\substack{\text { a }}}$		$\substack{17164 \\ 674}$				${ }_{\substack{38127 \\ 4833}}^{\substack{\text { a }}}$			${ }_{1}^{165469}$			103154 3scose		（1061488						
			123832	1906	${ }_{1256}^{1506}$				6024					，		8943	309959	\％eon	202	4		，	${ }_{\text {g3068 }}$		迷	313507	Sos7	21685	5ms	\％os81	27799	${ }^{27885}$	3153250	coses8					1035		2088s51
${ }_{11}^{10}$	${ }_{\text {30995 }}^{\text {307134 }}$	$\substack { 7380 \\ \begin{subarray}{c}{\text { gs90 }{ 7 3 8 0 \\ \begin{subarray} { c } { \text { gs90 } } } \end{subarray}$	${ }_{\substack{40294 \\ \text { 10835 }}}$	7			2278	${ }_{\substack{1827 \\ 10917}}$		${ }_{\text {73599 }}^{7259}$		${ }^{4317}$	${ }_{\substack{427394 \\ 32115}}^{\substack{\text { and }}}$		（30900			（108081		（127300	${ }_{\substack{135739 \\ 73296}}$	${ }^{63}$		${ }_{\substack{179937 \\ 1153931}}$		（ex			${ }_{\substack{\text { asiove } \\ 24770}}^{\substack{\text { a }}}$			${ }_{\substack{20199 \\ 99888}}^{2}$	${ }_{\substack{277396 \\ 110321}}^{20}$					${ }_{\substack{118731 \\ 38948}}$		${ }_{\substack{79353 \\ 46737}}^{\text {and }}$	
$\begin{aligned} & 11 \\ & 12 \\ & 12 \end{aligned}$		15912	10030	488877	${ }_{3} 10894$	\％		${ }^{108085}$	20980	${ }_{27312}^{239}$			${ }^{338580}$	20，	20	312472	28992	${ }^{121973}$		6，668			，	509	O692	9603	7802	2283	${ }_{\text {ckide }}^{2385}$	11458	146590	4158			${ }_{4}^{4723855}$	311735	${ }^{\text {cobese }}$	${ }_{\text {cher }} 528382$	${ }^{23883}$		
13		37359	${ }_{5}^{372353}$	${ }^{1236338}$			550	${ }^{198436}$	${ }_{\text {13720 }}^{17504}$	${ }_{\substack{12005 \\ 5073}}$	${ }_{12295}^{12925}$	12312	${ }_{2}^{23090}$	coich	${ }_{\substack{235923 \\ \text { 621326 }}}$	50737	559830	cisioli	6056755	cole 31297400		${ }^{1209245}$	${ }_{\substack{192320 \\ 7241}}$			${ }^{1202991}$		$\xrightarrow{3 \text { a4556 }}$	（127233	2 261455	14as97	${ }_{\text {713as }}^{11395}$	103139	215978	311036		${ }^{3272351}$	${ }_{3}^{39456}$		43937	${ }^{27334759}$
$\begin{aligned} & 14 \\ & 18 \\ & \hline 18 \end{aligned}$		12	5431			1093				${ }^{5} 5801$	${ }_{22138}^{3238}$					${ }^{25885854}$			2m2	322109	145532	${ }^{1292959}$	134		92031	122339			${ }_{\text {228333 }}$	${ }^{236125}$		806518	60033	${ }^{29298885}$	520085		26233		12051293	$\xrightarrow{2517584}$	
	10459988	${ }^{2120388}$	55528	4033	223522	${ }^{373651}$	${ }_{\substack{2050}}^{2050}$	3805	Sex	${ }_{\substack{370196}}^{\substack{3050}}$		64112	${ }^{62273}$	12235	${ }^{12125380}$	300433	${ }^{1092933}$	${ }^{287251}$			（137410		${ }^{417535}$	${ }_{\substack{170136 \\ 172723}}$	cose	${ }^{1888927}$		285392				${ }_{\text {che }}^{1737237}$	${ }_{5}^{633315}$	${ }^{2359502}$	S41098	${ }^{728}$		57639	$\substack{20038 \\ 3551575 \\ \hline}$	1097012	${ }^{2720556}$
			81	${ }_{\text {cosem }}$		${ }_{7} \mathbf{3} 23875$	${ }^{122946}$			Stessi		${ }^{832398}$	${ }^{\text {zecoss }}$	Sis332	${ }^{\text {antl7 }}$				${ }_{3} 124029$	${ }^{2759350}$	${ }^{1027497}$	${ }^{1203735}$	边	1230395	530973	Lease				Sterati			230935								
					1288830					10.5396		229																													
	\％	3836			（127674		（sson	边 388	108			938060		cisins		${ }_{\text {20030 }}^{20235}$	750036		（19805	${ }^{1177999} 1$	52694				2184638	${ }^{6} 229213$			$\underbrace{}_{\substack{520126 \\ \text { sp7312 }}}$	2551723				ciss	（102775		24123				
	退	13309	2447	3， 3 atalus	${ }^{2} 3535126$	553013		Lscaters	941824		265s88	${ }_{\text {193 }}^{19345}$	\％69094	${ }_{2}^{2887739}$	${ }^{2069312}$	${ }_{\text {chisco }}$	1086235	44a456	${ }_{32172626}$	151168	10221	404628	137296		47506511	12532	19022								1641030						
				（6apens					Silate								退2935		退 212932																						
																													7302											，	
	5533			209\％	995687	${ }^{2336597}$	${ }^{1609332}$	33057808 5	${ }_{\text {sfarz7a6 }}$	23383	599		2331928		11937766	100539		anata	退 11.1983	asemid	\％osar	Sospes			2280073			${ }^{19359}$	92950											399960	
	2034468	267834	3503	13235	${ }_{582}^{585}$	14470	2098851	2945228	23965	5	14	11	90275	12751	158	${ }_{2}^{252460}$	941693	2366	23273	${ }_{301318}$	${ }^{11252539}$	4383061	22724	109984	11336	${ }^{11263}$		23093	${ }_{6544762}$	12032	10721	2159961	¢57103	11437488	${ }_{6558234}$	303796	2002998	\％895977	${ }^{3248907}$	285546	
	（8033	Stineme	233949	2007	1272	21654	－20927	200234	29726	（303232	99	（106927		S3325		${ }_{\text {20，}}^{230703}$			1021			${ }_{3}^{3152}$		${ }^{31932}$	900794	588339	（157049		${ }^{20849096}$ 17439	${ }_{\text {H29015 }}^{143667}$		（100436					2386			17335	
	${ }^{6} 19390$									${ }^{1230292}$	${ }^{1192939}$									3210228				33933，	$\substack{\text { So232828 } \\ \text { Se279 }}$	3 anarz	${ }^{\text {ALasam }}$	81		年38565				${ }_{\text {20，}}^{208781}$				S894			
	20903	4，	（102798268	${ }_{\substack{8551005 \\ 52035}}^{1}$	3605	${ }^{\text {cosidi4 }}$	Sill		（776059		${ }_{5}^{695954}$			560	，	${ }^{238079}$	${ }_{\text {cosers }}$	403	7095381	2509323	22429514					3357833		5635989		${ }^{\text {2183837 }}$		${ }_{3}^{40529358}$	${ }^{1124549}$ 65475		${ }_{122948}^{2439}$	soos222	1038802	${ }_{1122575}^{1314}$	${ }^{18984513}$	${ }_{4}^{7950720}$	
	2490	3243631	814e8	2083	${ }_{\text {coser }}^{2080}$		${ }_{\text {3 }}^{336000}$	2203		${ }^{3099766}$	${ }_{4}^{424183}$	${ }_{\text {162596 }}^{12045}$	${ }^{3275377}$	${ }_{\text {coser }}^{\substack{\text { cis239 }}}$	52	$2{ }^{1020244}$	557475	374018	${ }_{4}^{4109884}$	183244	${ }_{2}^{258501}$		cioch 6	cisk	${ }^{1938880}$	${ }^{205639}$		2 20394，	1818170	${ }_{\text {182154 }}^{1814}$	${ }_{4}^{455456}$	${ }^{3276840}$	120620			${ }^{3392934}$	${ }^{7} 722283$	${ }_{7}^{77352}$	${ }^{6019394}$	${ }_{\text {248881 }}^{2488}$	${ }_{\text {2 }}^{2 \times 5439}$
	108363	115247	100075	20818	${ }^{2033047}$	${ }^{1231170}$	159192	${ }_{135}^{206}$	${ }_{1200239}^{2015}$	1192724	${ }^{12} 12385$	${ }_{\text {103936 }}$	127 1206s	\％oscos	421487	1133307	${ }^{208035}$	${ }_{\text {gr3200 }}$	${ }^{3}$	108054	109938	${ }^{\text {3720 }}$	（163717	281243	${ }_{818122}^{121}$	${ }_{45413}$	${ }_{59937}$	${ }^{23959}$	94787	${ }_{\text {creas }}$	4	${ }_{873460}$	\％3837	139289	488971	${ }^{126714}$	${ }^{\text {7 } 727000}$	33195		647	${ }_{\text {cosemas }}$
	${ }_{\text {laser }}^{12951}$		332998	${ }_{\substack{118343 \\ 83299}}^{120}$				взз	${ }_{\text {ges }}^{\text {ges }}$	210534			${ }_{\substack{112002 \\ \text { gas5 }}}^{1}$		36721		${ }^{228929} 4$			${ }_{\substack{1042337 \\ 12158}}$		50335			${ }_{\substack{33769 \\ 59991}}^{3}$	${ }_{\substack{\text { g } \\ \text { gsagas }}}^{\text {ges }}$		${ }^{\frac{38}{37255}} \mathbf{2 1 0 6 7}$	${ }_{\substack{190578 \\ 13972}}^{12}$	${ }_{\substack{59393 \\ 25852}}^{5}$	${ }_{\substack{100837 \\ 20356}}^{\substack{\text { a }}}$	${ }_{\substack{139339 \\ 16532}}^{1}$	${ }_{\substack{392120 \\ \text { criss }}}$	${ }^{7} \mathbf{7}$ 6578		${ }^{\text {sozal }}$	1075	${ }^{1312}$	238	953	${ }^{324400}$
${ }_{40}^{39}$	20964	${ }_{\text {22888 }}^{22981}$	182991 39939	${ }_{\substack{33374 \\ 27762}}^{\substack{\text { a }}}$			${ }_{\substack{\text { 965s52 } \\ 68351}}$		$\underbrace{\substack{\text { a }}}_{\substack{56786 \\ \text { 61158 }}}$	${ }^{1207114} 5$	${ }_{\substack{6375 \\ 99654}}^{\text {¢974 }}$			1181689	${ }_{\text {2 }}^{22429091}$	${ }_{\substack{63352 \\ 40754}}^{\substack{\text { cis }}}$	710294	${ }_{\substack{128929 \\ 11195}}$	${ }_{\substack{35220 \\ 361156}}$	${ }_{\substack{\text { s57116 } \\ 84190}}$	${ }_{\substack{33799 \\ 121588}}$		${ }_{5}^{594798}$	${ }_{\substack{887759 \\ 616573}}$			2991	－ 265850	${ }_{\substack{77729 \\ 13094}}$	${ }_{\substack{\text { l1034 } \\ \text { 129881 }}}$	${ }_{\substack{81813 \\ 21215}}$	${ }_{17279}^{17215}$			12838 8879 $\substack{18}$	${ }_{\substack{2369 \\ 12317}}^{2}$					
${ }_{41}^{41}$	1812936	${ }_{\text {cosem }}^{\substack{138055}}$		${ }_{6}^{61543}$	${ }^{293931}$	${ }^{995992}$	${ }^{24827}$	${ }^{348366}$	55	${ }^{20223}$	${ }^{72882}$	4	25517	${ }^{43320}$	${ }^{1226474}$	${ }_{1}^{110854}$	S128216	76151	${ }_{1}^{183982}$	${ }^{3777988}$	27302	${ }_{\substack{18726 \\ 18026}}^{\text {20，}}$	2915	${ }^{2} 25$	${ }^{113354}$	${ }^{43456}$		8724	129508	${ }^{22541}$	${ }_{10}^{10118}$	${ }^{13776}$	${ }^{81054}$	${ }^{46137}$	415600						
43	1137	${ }^{312445}$		58003	33681	${ }_{115936}$	66004	${ }_{182027}^{2502}$		${ }_{66208}^{2308}$		224531	7512	${ }_{7} 1823$	124309	2260	1076656	24.65	46008	27668	${ }_{4}^{30881}$	${ }_{\text {l17261 }}^{1026}$	81999						${ }^{1031576}$		2261		（12025	${ }_{46137}$	${ }^{123097}$	2306		（ente			
${ }_{45}^{44}$		${ }_{\substack{19724 \\ 1929}}$			${ }_{\substack{\text { sas } \\ \text { lor1 }}}$	${ }_{\substack{\text { S }}}^{565383}$	559							${ }^{27660}$	${ }^{24554}$	6719		${ }^{28942}$		31733									退2399	${ }_{2}^{29524}$		2210	${ }_{21556}^{2243}$	50670		（2069					${ }^{44076}$
${ }_{47}^{46}$	${ }_{0}^{\circ}$					（singo							O26	（130					－	${ }^{63306}$	\bigcirc																				
${ }^{48}$	－					${ }^{20013}$								\bigcirc	122605			${ }_{5958}$	－		\bigcirc										\bigcirc		－						!	\bigcirc	
50	。	。				22013													。	。	。						。	。			。	。	。	。			\％	。	:	o	
${ }_{52}$	－	：													。				。	：	：	：				\bigcirc	！	\％				：	：	：					!	：	
${ }_{54}^{53}$	：	：													：				：	：	：	：				：	：	：				：	：	：			：		!	!	
55	：	－																																					!	\%	
57	。	－	\bigcirc											。	。	\bigcirc		。	。	。	。	。				。	。	。	。	。	。	。	。	。	。	。	－	－	－	:	

Table A4: Life history parameters assumed for S. fasciatus.

s. fasciatus				
M	0.125			McAllister and Duplisea (2012)
h	0.67		McAllister and Duplisea (2012)	
Length-at-maturity	22			
Knife-edged, Don Power, pers. commn				
Fraction of M that occurs	0.25			
before spawning $\left(M^{5}\right)$	L_{0}			
Length-at-age	31.88	0.2213	0	$L_{a}=L_{\text {inf }}\left(1-e^{-\kappa\left(a-t_{0}\right)}\right)$, Campana, pers. commn
	α	β		
Weight-at-age	0.01106	3.08		$W_{a}=\alpha\left(L_{a}\right)^{\beta} \quad$, McAllister and Duplisea (2012)

Appendix B - The Statistical Catch-At-Length Model

The model used for these assessments is a Statistical Catch-At-Length (SCAL) model. The approach used involves the construction of an age-structured model of the population dynamics and fitting it to the available abundance indices by maximising the likelihood function. The general specifications of the model and its equations are described below, followed by details of the contributions to the (penalised) log-likelihood function from the different sources of data available and assumptions concerning the stock-recruitment relationship. Quasi-Newton minimization is used to minimize the total negative loglikelihood function (the package AD Model Builder ${ }^{\top M}$, Otter Research, Ltd is used for this purpose).

B.1. Population dynamics

B.1.1 Numbers-at-age

The resource dynamics are modelled by the following set of population dynamics equations:

$$
\begin{align*}
& N_{y+1,0}=R_{y+1} \tag{B1}\\
& N_{y+1, a+1}=\left(N_{y, a} e^{-M_{a} / 2}-C_{y, a}\right) e^{-M_{a} / 2} \quad \text { for } 0 \leq a \leq m-2 \tag{B2}\\
& N_{y+1, m}=\left(N_{y, m-1} e^{-M_{m-1} / 2}-C_{y, m-1}\right) e^{-M_{m-1} / 2}+\left(N_{y, m} e^{-M_{m} / 2}-C_{y, m}\right) e^{-M_{m} / 2} \tag{B3}
\end{align*}
$$

where
$N_{y, a} \quad$ is the number of fish of age a at the start of year y (which refers to a calendar year),
$R_{y} \quad$ is the recruitment (number of 0-year-old fish) at the start of year y,
M_{a} denotes the natural mortality rate for fish of age a,
$C_{y, a}$ is the predicted number of fish of age a caught in year y, and
$m \quad$ is the maximum age considered (taken to be a plus-group), $m=20$.

These equations reflect Pope's form of the catch equation (Pope, 1972) (the catches are assumed to be taken as a pulse in the middle of the year) rather than the more customary Baranov form (Baranov, 1918) (for which catches are incorporated under the assumption of steady continuous fishing mortality). Pope's form has been used in order to simplify computations. As long as mortality rates are not too high, the differences between the Baranov and Pope formulations will be minimal.

B.1.2. Recruitment

The number of recruits at the start of year y is assumed to be related to the spawning stock size (i.e. the biomass of mature fish) by a Beverton-Holt stock-recruitment relationship (Beverton and Holt, 1957), parameterised in terms of the "steepness" of the stock-recruitment relationship, h, and the pre-
exploitation equilibrium spawning biomass, $K^{s p}$, and recruitment, R_{0} and allowing for annual fluctuation about the deterministic relationship:
$R_{y}=\frac{4 h R_{0} B_{y}^{s p}}{K^{s p}(1-h)+(5 h-1) B_{y}^{s p}} e^{\left(\varsigma_{y}-\sigma_{R}^{2} / 2\right)}$
where
$\varsigma_{y} \quad$ reflects fluctuation about the expected recruitment for year y, which is assumed to be normally distributed with standard deviation σ_{R} (which is input in the applications considered here); these residuals are treated as estimable parameters in the model fitting process.
$B_{y}^{s p} \quad$ is the spawning biomass at the start of year y, computed as:
$B_{y}^{s p}=\sum_{a=1}^{m} f_{a} w_{a}^{s t r t} N_{y, a} e^{-M_{a} M^{s}}$
where
$w_{a}^{\text {strt }}$ is the mass of fish of age a during spawning,
f_{a} is the proportion of fish of age a that are mature
M^{s} is the fraction of mortality that occurs before spawning ($M^{s}=0.25$).
In the fitting procedure, $K^{s p}$ is estimated while h has thus far been fixed at 0.67 for consistency with McAllister and Duplisea (2011).

B.1.3. Total catch and catches-at-age

The catch-at-age in year y is given by:
$C_{y, a}=N_{y, a} e^{-M_{a} / 2} S_{y, a} F_{y}$
where
$S_{y, a} \quad$ is the commercial selectivity (i.e. combination of availability and vulnerability to fishing gear) at age a and in year y; when $S_{y, a}=1$, the age-class a is said to be fully selected, and
$F_{y} \quad$ is the proportion of a fully selected age class that is fished.
Selectivity is estimated as a function of length and then converted to selectivity-at-age:
$S_{y, a}=\sum_{l} S_{y, l} A_{a, l}$
where $A_{a, l}$ is the proportion of fish of age a that fall in the length group I (i.e., $\sum_{l} A_{a, l}=1$ for all ages).
The matrix $A_{a, l}$ is calculated under the assumption that length-at-age is normally distributed about a mean given by the von Bertalanffy equation, i.e.:
$L_{a} \sim N\left[L_{\infty}\left(1-e^{-\kappa\left(a-t_{o}\right)}\right) ; \theta_{a}^{2}\right]$
where
θ_{a} is the standard deviation of length-at-age a, which is taken as proportional to the expected length-at-age a, i.e.:
$\theta_{a}=\beta^{*} L_{\infty}\left(1-e^{-\kappa\left(a-t_{o}\right)}\right)$
with β^{*} an estimable parameter.

The model estimate of the survey biomass is calculated as:
$B_{y}^{s u r v, i}=\sum_{a=1}^{m} \tilde{w}_{y, a}^{\text {mid }} S_{a}^{s u r v, i} N_{y, a} e^{-M_{a} \frac{m^{\text {mavr,i}}}{12}}\left(1-S_{a} F_{y} \frac{m^{s u r v, i}}{12}\right)$
where
$S_{a}^{s u r v, i}$ is the survey selectivity for age a for survey i,
$m^{s u r v, i}$ is the month in which survey takes place ($m^{s u r v, i}=7$), and
$\widetilde{w}_{y, a}^{\text {mid }}$ is the selectivity-weighted mid-year weight-at-age a landed in year y, and
$\tilde{w}_{y, a}^{\mathrm{mid}}=\sum_{l} S_{y, l} w_{l} A_{a, l} / \sum_{l} S_{y, l} A_{a, l}$
with
$w_{l} \quad$ being the weight of fish of length l.

B.1.4. Initial conditions

For the first year $\left(y_{0}\right)$ considered in the model therefore, the stock is assumed to be at a fraction (θ) of its pre-exploitation biomass, i.e.:

$$
\begin{equation*}
B_{y_{0}}^{s p}=\theta \cdot K^{s p} \tag{B12}
\end{equation*}
$$

with the starting age structure:

$$
\begin{equation*}
N_{y_{0}, a}=R_{\text {start }} N_{\text {start }, a} \quad \text { for } 0 \leq a \leq m \tag{B13}
\end{equation*}
$$

where

$$
\begin{align*}
& N_{\text {start }, 0}=1 \tag{B14}\\
& N_{\text {start }, a}=N_{\text {start }, a-1} e^{-M_{a-1}\left(1-\phi S_{a-1}\right)} \quad \text { for } 1 \leq a \leq m-1 \tag{B15}\\
& N_{\text {start }, m}=N_{\text {start }, m-1} e^{-M_{m-1}\left(1-\phi S_{m-1}\right) /\left(1-e^{-M_{m}}\left(1-\phi S_{m}\right)\right)} \tag{B16}
\end{align*}
$$

where ϕ characterises the average fishing proportion over the years immediately preceding y_{0}.
Unless indicated otherwise though, the stock is assumed to be at pristine equilibrium in 1960, i.e. $\theta=1$ and $\phi=0$ for the results reported here.

B.2. The (penalised) likelihood function

The model can be fit to survey abundance indices, and commercial and survey catch-at-length data to estimate model parameters (which may include residuals about the stock-recruitment function, the fishing selectivities, the annual catches or natural mortality, facilitated through the incorporation of penalty functions described below). Contributions by each of these to the negative of the (penalised) log-likelihood ($-\ell \mathrm{n} L$) are as follows.

B.2.1. Survey abundance data

The likelihood is calculated assuming that the observed survey index is log-normally distributed about its expected value:
$I_{y}^{i}=\hat{I}_{y}^{i} \exp \left(\varepsilon_{y}^{i}\right) \quad$ or $\quad \varepsilon_{y}^{i}=\ln \left(I_{y}^{i}\right)-\ln \left(\hat{I}_{y}^{i}\right)$
where
$I_{y}^{i} \quad$ is the survey biomass index for year y and survey i,
$\hat{I}_{y}^{i}=\hat{q}^{i} \hat{B}_{y}^{s u r v, i}$ is the corresponding model estimate, where $\widehat{B}_{y}^{s u r v, i}$ is the model estimate of survey biomass, given by equation (B10),
$\hat{q}^{i} \quad$ is the constant of proportionality (catchability) for survey series i, and
$\varepsilon_{y}^{i} \quad$ from $N\left(0,\left(\sigma_{y}^{i}\right)^{2}\right)$.

The contribution of the survey biomass data to the negative of the log-likelihood function (after removal of constants) is then given by:
$-\ln L^{\text {surv }}=\sum_{i} \sum_{y}\left[\ln \left(\sigma_{y}^{i}\right)+\left(\varepsilon_{y}^{i}\right)^{2} / 2\left(\sigma_{y}^{i}\right)^{2}\right]$
where
$\sigma_{y}^{i} \quad$ is the standard deviation of the residuals for the logarithm of survey index i in year y.
The catchability coefficient q^{i} for survey index i is estimated by its maximum likelihood value:

$$
\begin{equation*}
\ln \hat{q}^{i}=1 / n_{i} \sum_{y}\left(\ln I_{y}^{i}-\ln \hat{B}_{y}^{s u r v, i}\right) \tag{B19}
\end{equation*}
$$

B.2.2. Commercial catches-at-length

The contribution of the catch-at-length data to the negative of the log-likelihood function under the assumption of an "adjusted" (or "Punt-Kennedy (1997)") lognormal error distribution is given by:
$-\ln L^{C A L}=W_{C A L} \sum_{y} \sum_{l}\left\lfloor\ln \left(\sigma_{\text {com }} / \sqrt{p_{y, l}}\right)+p_{y, l}\left(\ln p_{y, l}-\ln \hat{p}_{y, l}\right)^{2} / 2\left(\sigma_{c o m}\right)^{2}\right\rfloor$
where
$p_{y, l}=C_{y, l} / \sum_{l^{\prime}} C_{y, l^{\prime}}$ is the observed proportion of fish caught in year y that are of length I, $\hat{p}_{y, l}=\hat{C}_{y, l} / \sum_{l^{\prime}} \hat{C}_{y, l^{\prime}}$ is the model-predicted proportion of fish caught in year y that are of length I,
where

$$
\begin{equation*}
\hat{C}_{y, l}=N_{y, a} A_{a, l} S_{y, l o} e^{-M_{a} / 2} F_{y} \tag{B21}
\end{equation*}
$$

and $\sigma_{\text {com }} \quad$ is the standard deviation associated with the catch-at-length data, which is estimated in the fitting procedure by:

$$
\begin{equation*}
\hat{\sigma}_{c o m}=\sqrt{\sum_{y} \sum_{l} p_{y, l}\left(\ln p_{y, l}-\ln \hat{p}_{y, l}\right)^{2} / \sum_{y} \sum_{l} 1} \tag{B22}
\end{equation*}
$$

The log-normal error distribution underlying equation (B20) is chosen on the grounds that (assuming no ageing error) variability is likely dominated by a combination of interannual variation in the distribution of fishing effort, and fluctuations (partly as a consequence of such variations) in selectivity-at-age, which suggests that the assumption of a constant coefficient of variation is appropriate. However, for ages poorly represented in the sample, sampling variability considerations must at some stage start to dominate the variance. To take this into account in a simple manner, motivated by binomial distribution properties, the observed proportions are used for weighting so that undue importance is not attached to data based upon a few samples only.

The $W_{C A L}$ weighting factor is set to 0.01 to downweight the contribution of the catch-at-length data (which tend to be positively correlated between adjacent length groups) to the overall negative loglikelihood compared to that of the survey biomass data.

Commercial catches-at-length are incorporated in the likelihood function using equation (B20), for which the summation over age I is taken from length $I_{\text {minus }}$ (considered as a minus group) to $I_{\text {plus }}$ (a plus group), see Table B1.

B.2.3. Survey catches-at-length

The survey catches-at-length are incorporated into the negative of the log-likelihood in an analogous manner to the commercial catches-at-length, assuming an adjusted log-normal error distribution (equation (B20)) where:
$p_{y, l}^{i}=C_{y, l}^{\text {surv }, i} / \sum_{l^{\prime}} C_{y, l^{\prime}}^{s u r v, i}$ is the observed proportion of fish of length / in year y for survey series i,
$\hat{p}_{y, l}^{i} \quad$ is the expected proportion of fish of length / in year y in the survey i, given by:
$\hat{p}_{y, l}^{i}=\hat{C}_{y, l}^{i} / \sum_{l^{\prime}} \hat{C}_{y, l^{\prime}}^{i}$ is the model-predicted proportion of fish caught in year y and survey i that are of length $/$,
where
$\hat{C}_{y, l}^{i}=N_{y, a} A_{a, l} S_{l}^{s u r v, i} e^{-M_{a} \frac{m^{\operatorname{sum}, i}}{12}}\left(1-S_{a} F_{y} \frac{m^{\operatorname{sur}, i}}{12}\right)$
Survey catches-at-length are incorporated in the likelihood function using equation (B20), for which the summation over age I is taken from length $I_{\text {minus }}$ (considered as a minus group) to $I_{\text {plus }}$ (a plus group), see Table B1.

B.2.4. Stock-recruitment function residuals

The stock-recruitment residuals are assumed to be log-normally distributed. Thus, the contribution of the recruitment residuals to the negative of the (now penalised) log-likelihood function is given by:

$$
\begin{equation*}
-\ell n L^{\text {SRpen }}=\sum_{y=y 1}^{y 2}\left[\varepsilon_{y}^{2} / 2 \sigma_{R}^{2}\right] \tag{B24}
\end{equation*}
$$

where
$\varepsilon_{y} \quad$ from $N\left(0,\left(\sigma_{R}\right)^{2}\right)$, which is estimated for year y1 to $y 2$ (see equation (B4)), and
$\sigma_{R} \quad$ is the standard deviation of the log-residuals, which is input ($\sigma_{R}=0.4$ or $\sigma_{R}=1.5$)

Table B1: Minus and plus length groups (in cm) for the commercial and survey CAL. Note: $I_{\text {min }}$ for the surveys is not taken as a minus group.

	S. fasciatus
Commercial CAL:	
$I_{\text {minus }}$	20
$I_{\text {plus }}$	40
Survey CAL:	
$I_{\text {minus }}$	10
$I_{\text {plus }}$	40

B.3. Model parameters

B.4.1. Fishing selectivity-at-length:

The commercial and survey fishing selectivity-at-length, S_{l} and $S_{l}^{\text {surv,i }}$ are estimated directly for a series of lengths (see Table B2) and is taken to be linear between these lengths. The slope from lengths $I_{\text {minus }}$ to $I_{\text {minus }}+1$ is assumed to continue exponentially to lower lengths down to length 1 . For lengths above $I_{\text {plus }}$, the selectivity is taken either to be flat (i.e. $S_{l}=S_{l_{\text {plus }}}$ for $l>I_{\text {plus }}$) or decreasing exponentially (i.e. $S_{l}=S_{l_{\text {plus }}} e^{s}$ for $l>I_{\text {plus }}$, with s an estimable parameter).

The selectivities-at-length are then converted to an effective selectivity at age \widetilde{S}_{a} :
$\widetilde{S}_{a}=\widetilde{w}_{a}^{\text {mid }} / w_{a}^{\text {mid }}$
with
$\tilde{w}_{a}^{\text {mid }}=\sum_{l} S_{l} w_{l} A_{a+1 / 2, l}$
$\widetilde{w}_{a}^{\text {mid }}$ is the selectivity-weighted mid-year weight-at-age a, and
$w_{l} \quad$ is the weight of fish of length $/$

Table B2: Lengths (cm) at which commercial and survey selectivity is estimated directly.

Commercial CAL:	20	25	30	35	40		
Survey CAL:	10	15	20	25	30	35	40

REFERENCES

Baranov, F.T. 1918. On the question of the dynamics of the fishing industry. Nauchnyi issledovatelskii iktiologisheskii Institut Izvestia, I: 81-128.

Beverton, R.J.H., and Holt, S.J. 1957. On the dynamics of exploited fish populations. Fisheries Investment Series 2, Vol. 19, U.K. Ministry of Agriculture and Fisheries, London. 533pp.

Pope, J.G., 1972. An investigation of the accuracy of Virtual Population Analysis using cohort analysis. International Commission for the North Atlantic Fisheries Research Bulleting, 9: 65-74

Punt, A.E. and Kennedy, R.B. 1997. Population modelling of Tasmanian rock lobster, Jasus edwardsii, resources. Mar. Freshwater Res. 48: 967-980.

Appendix C: Full set of results for runs 1 to 16b

Figure C.1: Full set of results for the SCAL assessment with $\boldsymbol{q}=\mathbf{1 . 5}$ and flat selectivity at larger lengths (run 1).

Figure C.2: Full set of results for the SCAL assessment with $\boldsymbol{q}=\mathbf{1 . 0}$ and flat selectivity at larger lengths (run 2).

Figure C.3: Full set of results for the SCAL assessment with $\boldsymbol{q}=\mathbf{0 . 5}$ and flat selectivity at larger lengths (run 3).

Figure C.4: Full set of results for the SCAL assessment with $\boldsymbol{q}=\mathbf{0 . 1 5}$ and flat selectivity at larger lengths (run 4).

Figure C.5: Full set of results for the SCAL assessment with $\boldsymbol{q}=\mathbf{1 . 5}$ and decreasing selectivity at larger lengths (run 5).

Figure C.6: Full set of results for the SCAL assessment with $\boldsymbol{q}=\mathbf{1 . 0}$ and decreasing selectivity at larger lengths (run 6).

Figure C.7: Full set of results for the SCAL assessment with $\boldsymbol{q}=\mathbf{0 . 5}$ and decreasing selectivity at larger lengths (run 7).

Figure C.8: Full set of results for the SCAL assessment with $\boldsymbol{q}=\mathbf{0 . 5}$ and decreasing selectivity at larger lengths (run 8).

Figure C.9: Full set of results for the SCAL assessment with $\boldsymbol{q}=\mathbf{0 . 4 3}$ (run 9).

Figure C.10: Full set of results for the SCAL assessment with \boldsymbol{q} estimated (run 10).

Figure C.11: Full set of results for the SCAL assessment with alternative growth curve (run 11).

Figure C.12a: Full set of results for the SCAL assessment with $\boldsymbol{q}=\mathbf{0 . 5}$ and $\sigma_{R}=\mathbf{0 . 4}$ (run 12a).

Figure C.12b: Full set of results for the SCAL assessment with $\boldsymbol{q}=\mathbf{0 . 5}$ and $\sigma_{R}=1.5$ (run 12b).

Figure C.12c: Full set of results for the SCAL assessment with \boldsymbol{q} estimated and $\sigma_{R}=1.5$ (run 12c).

Figure C.13: Full set of results for the SCAL assessment with a start in 1977 (run 13).

Figure C.14: Full set of results for the SCAL assessment with a start in 1977 (run 14).

Figure C.15a: Full set of results for the SCAL assessment with flat survey selectivity from 25 cm onwards (run 15a).

Figure C.15b: Full set of results for the SCAL assessment with flat survey and commercial selectivities from 25 cm onwards (run $15 b$).

Figure C.16a: Full set of results for the SCAL assessment with $\boldsymbol{q = 0 . 5}, \sigma_{R}=1.5$ and flat survey and commercial selectivities (run $16 a$).

Figure $\mathbf{C} .16 \mathrm{~b}$: Full set of results for the SCAL assessment with \boldsymbol{q} estimated, $\sigma_{R}=1.5$ and flat survey and commercial selectivities (run 16b).

